Scaling Similarity Joins over Tree-Structured Data
نویسندگان
چکیده
Given a large collection of tree-structured objects (e.g., XML documents), the similarity join finds the pairs of objects that are similar to each other, based on a similarity threshold and a tree edit distance measure. The state-ofthe-art similarity join methods compare simpler approximations of the objects (e.g., strings), in order to prune pairs that cannot be part of the similarity join result based on distance bounds derived by the approximations. In this paper, we propose a novel similarity join approach, which is based on the dynamic decomposition of the tree objects into subgraphs, according to the similarity threshold. Our technique avoids computing the exact distance between two tree objects, if the objects do not share at least one common subgraph. In order to scale up the join, the computed subgraphs are managed in a two-layer index. Our experimental results on real and synthetic data collections show that our approach outperforms the state-of-the-art methods by up to an order of magnitude.
منابع مشابه
Evaluating Performance and Quality of XML-Based Similarity Joins
A similarity join correlating fragments in XML documents, which are similar in structure and content, can be used as the core algorithm to support data cleaning and data integration tasks. For this reason, built-in support for such an operator in an XML database management system (XDBMS) is very attractive. However, similarity assessment is especially difficult on XML datasets, because structur...
متن کاملA Fast Algorithm for high-dimensional Similarity Joins
Many emerging data mining applications require a similarity join between points in a highdimensional domain. We present a new algorithm that utilizes a new index structure, called the -kdB tree, for fast spatial similarity joins on high-dimensional points. This index structure reduces the number of neighboring leaf nodes that are considered for the join test, as well as the traversal cost of nd...
متن کاملEmbedding Similarity Joins into Native XML Databases
Similarity joins in databases can be used for several important tasks such as data cleaning and instance-based data integration. In this paper, we explore ways how to support such tasks in a native XML database environment. The main goals of our work are: a) to prove the feasibility of performing tree similarity joins in a general-purpose XML database management system; b) to support stringand ...
متن کاملA Two-Step Approach for Tree-structured XPath Query Reduction
XML data consists of a very flexible tree-structure which makes it difficult to support the storing and retrieving of XML data. The node numbering scheme is one of the most popular approaches to store XML in relational databases. Together with the node numbering storage scheme, structural joins can be used to efficiently process the hierarchical relationships in XML. However, in order to proces...
متن کاملHigh-dimensional Proximity Joins
Many emerging data mining applications require a proximity (similarity) join between points in a high-dimensional domain. We present a new algorithm that utilizes a new data structure, called the -kd tree, for fast spatial proximity joins on high-dimensional points. This data structure reduces the number of neighboring leaf nodes that are considered for the join test, as well as the traversal c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 8 شماره
صفحات -
تاریخ انتشار 2015